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WAVEFIELDS NEAR TRANSVERSE CUSP CAUSTICS PRODUCED BY
REFLECTING ULTRASONIC TRANSIENTS AND TONE BURSTS
FROM CURVED SURFACES
Abstract
by Carl King Frederickson, Ph. D.
Washington State University
August 1991

Chair: Philip L. Marston

Ultrasonic wavefields reflected from curved surfaces were studied in the vicinity of
caustics. Acoustical and optical transverse cusp diffraction catastrophes produced by
reflections from a curved metal surface in water were imaged by displaying the amplitude
or intensity in an observation plane transverse to the general direction of propagation. The
optical image was used to locate the cusp point in the observation plane. Acoustical
diffraction patterns for sine waves, described by the Pearcey function, were calculated with
the parameters determined by the experimental setup leaving no adjustable scaling
parameters. The calculated and experimental acoustical diffraction patterns showed good
agreement near the cusp point. The acoustical diffraction pattern showed the expected
mirror symmetry about an axis. The pattern was shown to scale properly with frequency.

The transverse cusp caustic separates space into a region with three rays and a
region with one ray. Inside the caustic there are three rays, on the curve two of the rays
merge and disappear leaving one ray outside. Transient signals reflected from curved
surfaces exhibited the merging and disappearance of rays on the caustic. Relative arrival
times for signals in calculated and recorded time traces agree well. The relation to the
wavefront parameters of the temporal orientation of the travel time surface is discussed.
The general shape of the travel time surface is that of the swallow tail caustic surface.

The temporal shape of the transient echoes was seen to be generally that of the
incident signal or of its Hilbert transform. The Hilbert transform shape identifies the

signals that have touched the caustic. The observed arrival sequence of the transient signals




was shh inside the caustic and one h outside, where s stands for a signal with the general

shape of the incident signal and h for its Hilbert transform. The relation between the

surface and wavefront parameters and the arrival sequence is given.
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CHAPTER ONE
INTRODUCTION AND OVERVIEW

This study is applicable to the simplest class of nontrivial three-dimensional caustic
surfaces produced by reflecting sound from curved surfaces. It is also relevant to the
understanding of the temporal and frequency dependence of wavefields where the strength
of the focusing is limited by the shape of the initial wavefront instead of its aperture or
spatial extent. This is commonly the situation in naturally produced caustics such as those
produced when light is refracted by a rippled surfacel. This dissertation describes
experiments conducted to study wavefields in the vicinity of  particular structurally stable
caustic: the transverse cusp caustic. The caustic was formed in an observation plane by
reflecting ultrasonic tone bursts and transients in water from a surface with the generic local
shape given by previous predictions” h(x,y) = h1x2 + hoxy2 + h3y2. Tone bursts were
used to approximate steady state signals in order to image the diffraction pattern, given by
the Pearcey function 3, that decorates the transverse cusp caustic. Transient signals were
used to study the merging of signals associated with the merging of rays as the caustic is
crossed. The temporal shape of the transient echoes was used to identify in the arrival
sequence which echoes touch the caustic and which echoes do not.

Some background iinformation pertinent to the transverse cusp caustic will now be
reviewed. An important and unique aspect of the present experimental study is the use of
high frequency sound to produce the wavefield such that both the steady state wavefield
pattern and transient behavior could be observed for the same reflection geometry. The
transverse cusp caustic can be observed in a uv observation plane that is transverse to the
general direction of propagation of the wavefront that produces the caustic. A shear free
transverse cusp caustic is described by a cubic cusp curve in the observation
plane 3, D(u — uc)3 = vZ, where u and v are transverse coordinates and the cusp point is
located at (u¢,0). The wavefront that forms a shear free caustic, the caustic and the

associated diffraction pattern have a mirror symmetry about a horizontal axis. The




transverse cusp caustié separates space into a region with three rays from the wavefront and
a region with one ray from the wavefront. On the transverse cusp caustic two of the rays
merge (are focused) and disappear outside the caustic.

Previously a particular example of an optical transverse cusp was observed that was
embedded in the * yperbolic umbilic diffraction catastrophe?. Away from the most singular
section of the hyperbolic umbilic, a transverse cusp diffraction catastrophe is evident as part
of the unfolding of the hyperbolic umbilic. Though this transverse cusp observed by
Marston and Trinh was imaged at infinity, from consideration of these observations the
local shape of the outgoing wavefront was described that forms a transverse cusp in a finite
observation plane as well as the farfield2. This result motivated the form of the reflecting
surface h(x,y) mentioned above. The diffraction pattern that decorates this caustic was
shown to be the Pearcey function that describes the field near the cusp associated with the
cylindrical aberration 3.

Chapter 2 describes experiments to image the diffraction pattern associated with the
transverse cusp caustic. A wavefront with the local shape that forms a transverse cusp was
produced by reflecting sound from an appropriately curved surface. The wavefront and
associated diffraction pattern thus produced were studied in the lab in an observation plane
transverse to the direction of propagation. To study the transverse cusp caustic, computer
software was developed to record the amplitude of a reflected acoustical signal in a
transverse observation plane and display this information in a gray scale picture. This
provided a picture of the diffraction pattern produced by the reflection of an approximately
steady state signal from the curved surface. The pictures were then used to compare the
imaged diffraction pattern: to the theoretical calculations of the patterns.

There were no scaling parameters used in the comparison of the experimental data
and theory. The reflecting surface was measured to find the local surface height in the
region that produced the cusp point of the caustic. The location of the cusp point in the

observation plane was given by gray scale pictures of the wavefront reflected when an




optical source and receiver were used in place of the acoustical source and receiver. The
small wavelength of the optical source produced a bright ransition across the caustic (due
to the focusing of the two rays on the caustic). In the comparisons of the acoustical data
and theory the location of the optical cusp point was used as a guide for the placement of
the theoretical overlay on the acoustical picture. The differences between the location of the
optical cusp point and the acoustical cusp point, found by finding the location of best
agreement between the experimental and theoretical diffraction patterns near the cusp point,
were very small and could be accounted for as a small difference in the horizontal and
vertical positions of the optical and acoustical sources. The effect of the sign of hy, the
coefficient of x2 in the shape of the surface, being positive is discussed in reference to the
region where the opening rate of the transverse cusp caustic diverges.

In Chapter 3 the merging of the rays on the transverse cusp caustic are studied.
There is a finite path difference for signals propagating along different rays from the
wavefront. When transient (very short) source signals are used, the length of the ray paths
define a sequence of arrival for the associated signals. As the caustic is approached from
inside, two of these arrivals should merge as the rays merge, and be lost outside the caustic
as the rays are lost. The arrivals of the signals in the observation plane can be described by
a three dimensional travel time surface having the general shape of the singular surface of
the swallow tail catastrophe 6. The axes of the travel time surface are given by the
transverse axes in the observation plane and time. The travel time surface can be used as a
tool to locate caustics by the merging of rays.

Experiments are described in Chapter 3 in which the travel time surface of a
transverse cusp caustic formed by reflecting sound from a curved surface in water was
imaged. Travel time traces were recorded at equispaced vertical positions along vertical
cuts through the observation plane both inside and outside the caustic. These time traces
could be displayed in a waterfall format to show the travel time curve associated with the

horizontal position of each cut. The travel time curves of each vertical cut display the




swallow tail shape associated with the travel time surface of the cusp caustic along with a
slowly varying contribution associated with propagation to the observation plane from the
exit plane. An optical gray scale picture of the wavefront reflected when the acoustical
source and receiver were replaced by an optical source and receiver was used as a reference
for the location of each time trace. As the observation point moves up into the cusp curve,
signals appear slightly before the cusp curve is reached due to a tunnelling of the acoustical
signal outside the caustic that can be associated with a ray having a complex phase 7
(complex point of origin). The signal that appears near the caustic reaches a maximum on
the caustic and then splits into two distinct signals after crossing the caustic. This
represents the merging of rays on the caustic and the appearance or disappearance of rays
as the caustic is crossed moving from outside or inside the caustic.

The information contained in the travel time surface is discussed in the later part of
Chapter 3. In the frequency domain, the diffraciion pattern contains information about the
shape of the wavefront in the shape of the maxima and minima of the pattern. The widths
of the maxima and minima of the pattern are controlled by the carrier frequency of the
source signal. In the time domain there is more information available through the added
dimension of time. The sequence of the arrivals in the observation plane is controlled by
the shape of the wavefront giving information not directly available in the diffraction
pattern. The travel time surface in the observation plane gives a picture of the local shape
of the wavefront after propagating from the exit plane to a region of the observation plane.
This local shape of the wavefront near the caustic can be associated with the shape of the
wavefront near the exit plane through the classification of the caustic surface. This
classification gives the general form of the distance function for the wavefront.

Echoes from the reflecting surface may have touched the caustic at some point prior
to arriving in the observation plane. These echoes will have distorted temporal shapes
relative to the temporal shape of the source signal. The distorted shape are described by the

Hilbert transform of the temporal shape of the source signal 89-10, Chapter 4 shows the




arrival sequence of the distorted and nondistorted signals for the transverse cusp caustic
formed by reflecting sound from a curved surface in water. For the reflecting surface used
the arrival sequence inside the caustic was predicted 10 be shh, where s represents a signal
with the general temporal shape of the source pulse and h represents the general temporal
shape of the Hilbert transform of the source pulse. Outside the caustic the single arrival
was predicted to be an h arrival. Time records showing the arrivals at equispaced
horizontal positions along the symmetry axis of the transverse cusp caustic are analyzed.
The arrival sequence shown in the time records agrees with the predicted arrival sequence
of shh inside the caustic and h outside. The surface parameters and their relation to the
arrival sequence are discussed along with some of the consequences of the distorted

temporal shape of the echoes that touch the caustic.
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CHAPTER TWO
THE TRANSVERSE CUSP DIFFRACTION CATASTROPHE PRODUCED
BY THE REFLECTION OF TONE BURSTS FROM A CURVED METAL
SURFACE IN WATER

2.1 INTRODUCTION

When sound propagates through an inhomogeneous medium or is reflected or
refracted by curved surfaces caustics may be formed. Caustics describe focal envelopes for
the rays traveling from a wavefront. Geometrical acoustics predicts unphysically divergent
amplitudes at caustics. Catastrophe theory relates the diffraction patterns of the caustics to
canonical Jdiffraction integrals, removing the divergence at the caustic!l.

The simplest focal envelope is the fold or Airy caustic!-2-3 formed by a wavefront
curved along only one direction. The fold caustic marks the transition from a region with
two distinct rays from the wavefront (the bright region) to a region where there are no rays
from the wavefront (the shadow region). On the Airy caustic itself the two rays merge to
come from the same point on the wavefront. The canonical diffraction integral that
describes the diffraction pattern near a fold caustic has same form as the Airy function.

The next more complicated envelope of rays is the axial (longitudinal) cusp
caustic!-23. The axial cusp is a cubic cusp curve of the form D(z — zp)? = x2, where z is
along the direction of propagation. (. 0) is the location of the cusp point, and x is a
position transverse to the direction of propagation. The wavefront that forms the axial cusp
caustic is also curved along only one direction, however, this focal envelope marks a
boundary between a region with three rays from the wavefront and a region with one ray
from the wavefront. Inside the cusp curve there are three distinct rays from the wavefront
to each point. On the cusp curve two of the rays merge to come from the same point on the
wavefront. Outside the cusp curve only one ray is directed from the wavefront to each

point. 1ne diffraction pattern decorating the cusp caustic was studied by Pearcey? in




connection with the axial cusp caustic associated with the cylindrical aberration. Pearcey
was able to show that the diffraction pattern near the cucn point could be described by the
Pearcey function, Eq.(12) below. The Pearcey function has the general form of the
canonical diffraction integral for the cusp causticl-2,

A transverse cusp caustic (TCC) is a cubic cusp curve that opens roughly transverse
to the direction of propagation. The general shape of the wavefront that forms an axial
cusp caustic has cylindrical symmetry, that is, it is only curved along one direction. A
wavefront curved along two directions transverse to the initial direction of propagation is
needed to form a TCC. The TCC shown in Fig. 1 is a cusp caustic without any shear
distortion opening transverse (perpendicular) to the general direction of propagation of the
initial wavefront. The generic shape of the wavefront in the exit plane that produces a TCC
without shear distortion in an observation plane proposed by Marston3-0 is given by Eq.
(1) below. A paraxial approximation of the propagation integral associated with this
wavetront gives a relation for the pressure in the observation plane proportional to the
Pearcey function, Eq. (9)3-6. This wavefront, like that of the axial cusp caustic without
shear, is symmetric about the direction of propagation. However, unlike the axial
wavefront, the TCC wavefront is not a cylindrical wavefront. The caustic produced by the
TCC wavefront is an intrinsically three-dimensional caustic. An example is the general
surface shape shown in Fig. 2. Cuts through this surface in uv planes perpendicular to the
z axis exhibit the same general difiraction pattern in the transverse uv observation plane as
an axial cusp caustic exhibits in a longitudinal observation plane.

TCC's are often embedded in more complicated caustics. An example of a more
complicated caustic exhibiting a TCC is the asteroid caustic’ formed by the smooth joining
of four TCC's with the cusp points pointing away from the center of the caustic vattern.
Dong and Adler were able to detect the TCC as part of an asteroid caustic produced by

diffraction into the near-field shadow region of an elliptical disk8. Using high frequency
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Figure. 1 Geometry of the transverse cusp diffraction catastrophe. The wavefront in the

exit plane (x,y) propagates to form a shear free TCC in the observation plane (u,v).
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Figure. 2 The TCC forms a caustic surface in space. Cuts through this surface along
planes perpendicular to the direction of propagation exhibit the two-dimensional TCC. The

locus of cusp points in consecutive planes forms the rib of the caustic suriace.
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sound (SMHz) Dong and Adler were able to observe the shape of the caustic curve but
indicated they were unable to resolve the diffraction pattern that should decorate the caustic.

Another example of a more complicated caustic that contains a TCC is the
hyperbolic umbilic away from its most singular section. The hyperbolic umbilic contains a
TCC along with a fold caustic. Photographs taken by Marston and Trinh of the light
scattered into the rainbow region by a levitated water drop clearly show the TCC embedded
in the hyperbolic umbilic caustic. The diffraction pattern decorating the TCC is evident in
the optical data taken by Marston and Trinh. The local shape of the region of a wavefront
that produces an embedded TCC in a higher order caustic should be that given in Eq. (1).
The wavefront proposed by Marston, Eq. (1), has been used by Dean and Marston to study
the opening rate of the TCC associated with the hyperbolic umbilic away from its most
singular section!0.

The wavefields that form specific caustics can be produced by reflecting sound
from surfaces having generic shapes. The diffraction pattern decorating the caustic can be
imaged if steady-state conditions are simulated while the impulse catastrophe will be
evident for a pulsed source2. In a homogeneous medium the shape of the reflected
wavefront is determined by the shapes of the incident wavefront and of the reflecting
surface. Thus for steady-state signals, the diffraction patterns decorating the caustics can
be studied by producing the wavefront that forms the caustic by reflecting sound from a
surface with the proper shape. This chapter will describe an experiment to image and study
the acoustical diffraction pattern of a transverse cusp caustic produced by reflecting long
ultrasonic tone bursts (approximating steady-state sound) from a curved metal surface, with
the local shape given by Eq. (3) below, in 2 homogeneous medium (deionized water).
Section 2.2 of the paper gives a review of the wavefront that produces the TCC in
subsection 2.2.A. Subsection 2.2.B is a list of the characteristics of the TCC which can be
observed in experimental data and used for comparisons to theoretical calculations. Section

2.3 describes the experimental setup and method used to image the diffraction pattern.
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Section 2.4 compares experimental and calculated diffraction patterns and gives the results
of the experiment. Section 2.5 discusses the results and concludes chapter 2. Appendix
2.A shows the derivation of the effective coordinate system that is used to relate the
theoretical calculations to the positions of the source and receiver. Appendix 2.B outlines
the experimental method for finding the quadratic approximation for the phase of the
acoustical source in the plane containing the reflecting surface. Appendix 2.C describes the

method used to approximate the acoustical reflection coefficient of the reflecting surface.

2.2 THEORY
A. A REVIEW OF A GENERAL WAVEFRONT THAT PRODUCES A
TRANSVERSE CUSP CAUSTIC ON PROPAGATION FROM AN EXIT
PLANE TO A DISTANT OBSERVATION PLANE

The generic shape of the wavefront that propagates from the exit plane, in Fig. 1
containing the point P', to an observation plane producing a TCC without shear is
locally3-6

- 2 2 2
W(x.y) =~ (ax" +axy” +a,y" +a,x +asy). (1)

The coefficients necessary for the formation of a TCC are aj and a. Coefficients aj and ap
control the shape of the caustic. Coefficient a3 affects the location of the caustic by
translating the wavefront along the x axis. To show that a3 acts only to translate the caustic
consider a translation of the origin along the x axis, x = x' - b,

W(x'y) = _[alx,z +ayy? + (2, = bajy’ + (a - 202 X + agy) @)

for b = a3/ap the y2 term is eliminated. Terms linear in x and y only shift the location of the
cusp point (uc) and may be set to zero by a proper choice of origin. This wavefront is a
two-dimensional wavefront; requiring the coefficient a2 be nonzero means that the
wavefront is not a cylindrical wavefront. The caustic formed by this wavefront has the

reflection symmetry about the u axis in the observation plane shown in Fig. 1.




The relevance of the wavefront having the form of Eq. (1) to the production of a
shear free transverse cusp was aiso noted by Nye et. al.!!. Generally the wavefront and
associated cusp caustic need not have the reflection symmetry implicit in Eq. (1). Sucha
lack of symmetry gives rise to a sheared cusp which displaces the caustic away from the
svmmetric caustic showii in Fig. 11217, The shear displacement vanishes as the cusp noint
is approached. The wavefront shape in Eq. (1) was previously applied to the scattering of
light from an oblate drop of water by Dean and Marston10, This shape was found to
describe the local shape of the wavefront that propagates to produce an optical transverse
cusp caustic within the unfolded hyperbolic umbilic diffraction catastrophe?.

The generic W(x,y) in Eq. (1) may be produced by the reflection of a signal
produced by a point source of sound from a surface of height!4

h(x,y) = h;x2 + hypxy? + h3y2, (3)
where linear terms may be included, though they only produce linear terms in the reflected
wavefront. The source is located in the source plane a distance zg from the exit plane, and a
TCC is formed in an observation plane a distance z from the exit plane. Figure 3 shows the
relative positions of the reflector, source, and receiver planes. A paraxial approximation of

the shape of the reflected wavefront gives

2 2
W(x,y,ug,vs) = 2h(x,y) + (x EZI—S +y ‘Zﬁ) —52—:L ) 4)
S s S

where ug, vg, and zg give the location of the source point. The validity of the use of the
paraxial approximation for classifying the TCC is discussed in Appendix D.
Using the effective coordinates given in Egs. (A10), the reduced distance function

for the TCC used in the phase of the diffraction integral, Eq. (12), is

2 2
0(x.y.Ue.Ve) = ~2h(x.y) - (Uex + Vey) += 5,1~ (5)

The two-dimensional diffraction integral Eq. (A12) may be evaluated to give the the

pressure in an observation plane proportional to the Pearcey function3.6.14

1/4 _ . . .
B(y) = k1/4 po i, e-ik(r +15) e~(£in/4) e~(ikUe2/4b,") P.,(wo.w1) 6)
irrs\f27t Iby'11/21ay']
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Figure. 3 Geometry for producing a TCC by reflecting the signal of a point source fromna
curved metal surface. The point source is located at (us, Vs, Zs) while the reflected

wavefront is sampled in the observation plane at the point (u, v, 2).




where r and rg are shown in Fig A1, § is the acoustical reflection coefficient, p,, is the
source strength, ay' = -2hy, by' = -2hy + 1/(2z¢), P+(w2,w}) is given by Eq. (9), and the
upper (lower) sign is taken when by <0 (by' > 0). The Pearcey function has the form of
the canonical diffraction integral of catastrophe theory that describes the diffraction pattern
of a cusp causticl-2. The control parameters of the Pearcey function are related to the
effective coordinates by3.6.14

2
w2 = ()" [Ue ~ Uec] sgnas), ™

and
wy = k34 by 11/ (IZ%I)”2 V, sga(by). @)

Plots of IP(w3, wp)l can be used to represent the diffraction pattern of the TCC5-6,

B THE CHARACTERISTICS OF THE TRANSVERSE CUSP CAUSTIC
AND THE ASSOCIATED DIFFRACTION CATASTROPHE

The diffraction pattern of a cusp caustic is described by the Pearcey function

o0

.54 s2
Pi+(w2,wy) = fexp[il ( T w2y + wls)] ds, 9

—00

where w7 and w) are the control parameters of the catastrophe and for the TCC are given
by Eqgs. (7) and (8). Figurc;, 4 shows a contour plot of IP(w3, wy)l for w) > 0. The
diffraction pattern, IP(w2, w1)l, produced by the symmetric wavefront of the unsheared
TCC has the same reflection symmetry about the horizontal axis in the observation plane as
does the TCC wavefront. The contours of IP(w),w)! for w; < 0 would be given by
reflecting the plot in Fig. 4 through the wy axis. The contour plot in Fig. 4 of IP(w2, w)!
for wy > 0, shows that the minima of the diffraction pattern are located symmetrically about

the horizontal axis. None of the minima of the pattern are located on the axis.
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Figure. 4 A contour plot of [P(w2, wi)l. The solid line leaving the origin to the left is the
cusp curve. To the right of the origin, the dotted line is the Stokes set. Note the minima
located outside but near the cusp curve. These minima are due to the interference of the real

and complex rays in this region.
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Our calculation of P(w2,w)) is based on an algorithm received from F. J. Wright!5,
The Pearcey function has a highly oscillatory phase outside the central region containing the
stationary phase points. For this reason the integral is split into three separate integrals!6.
The middle finite integral contains all the stationary points and is calculated numerically.
The two outer infinite integrals are approximated using an asymptotic series keeping only
the first three terms. This approximation works well near the cusp point. Comparisons of
contours of IP(w2,w )l calculated using this method and those calculated by Pearcey and
others agree well4:17.18,

The geometrical acoustics approximation of the field in the observation plane is
recovered by using the stationary phase approximation to evaluate the diffraction integral.
The field in the observation plane is given by the sum of the contributions from rays that
originate on the wavefront. The contribution of each ray is proportional to the reciprocal of

the square root of the Hessian56
15172
puv) = (g) (10)

where

002092 ;392 \2
gx—zé;z—(m (11)

evaluated at the stationary points of the phase of the diffraction integral

H(X,Y,Ue,ve) =

0
3% =2by'x + a2'y2 — Ue = 0, (12)
g% = 2y(ap'x + 2b3") ~ Ve =0, (13)

which define the rays to the observation plane. When the Hessian goes to zero the
geometrical approximation to the amplitude diverges. Simultaneous solution of Eqs (11)
and (12) with H(x,y,Ue,Ve) = 0 defines the cusp curve in terms of the effective and actual

coordinates respectively 3-6.14
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Dt (Ue - Ucc)3 = Vez’ dr(u - llcp)3 =(v- ch)z, (14a.b)

4ay' _Z2byby _32hyz
27(1 + ;f-— 4h;z)2

, (15a,b,c)

27612 T ap

where ucp = z(Uec — ug/zs) and vcp = 2(vy/Zs) give the actual location in the observation
plane of the cusp point, and dr is the actual opening rate in the observation plane having
units of 1/distance. The opening rate of the cusp curve is given by Eq. (15a) and the
effective cusp point location is (Uec, 0). There is a divergence in the opening rate, Eq.
(15a), of the TCC for surfaces with hj > 0 at a particular value of ze. This divergent
opening rate can make comparison of theoretical calculations and experimental data
difficult.

For observation points inside the cusp curve there are three real and unequal
solutions to the stationary phase conditions, Egs. (12) and (13). Real solutions of the
stationary phase conditions locate the real rays passing through an observation point. As
the observation point approaches the cusp curve from the inside, two of the real solutions
merge at the cusp curve to form a doubly degenerate real solution. When the simultancous
solution of Egs. (12), (13), and H = 0 is done graphically the merging of the rays on the
caustic is evident. For observation points outside the region bounded by the cusp curve,
there are one real and two complex conjugate solutions.

Figure 5 shows the graphical solution of Egs. (12), (13), and H=0, for by’ =
0.0118 cm~1, ap" = 0.00236 cm ~2, U = 0.05, and Ve = 0.001, 0.0177, and 0.05.
Equation (12) is represented by the parabola opening to the left, Eq. (13) by the rectangular
hyperbola, and H = 0 by the parabola opening to the right. The parabola representing the
zeros of the Hessian does not depend on U or Ve. The intersection of the two parabola
give the location in the exit plane of the degenerate rays to the cusp curve. As the
observation coordinate along the symmetry axis moves outside the cusp curve (U becomes

negative), the parabola opening to the left, Eq. (12), moves further to the left. At the cusp
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0,=0
V =0.05, 0.0177, 0.001

¢x= 0
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a = 0.00236 N \

Figure. 5 An example of the graphical solution to the stationary ;. uase conditions to locate
rays in the exit plane. The intersections between the parabola opening to the left and the
two branches of the hyperbola locate real rays in the exit plane which interfere at a point
inside the cusp curve. The intersections of the two parabola locate degenerate rays in the

exit plane which interiere on the cusp curve itself.
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point, Ue = 0, the two parabola will be tangent to each other at the origin where there will
be a triply degenerate solution to the three equations.

The hyperbola in Fig. 5 represent Eq. (13) for three different vertical positions.
When Ve = 0.001 the observation point is inside the cusp curve. The two branches of the
hyperbola intersect the parabola of Eq. (12) at three distinct places, representing the three
distinct ray locations in the exit plane. Moving up to Ve = 0.0177 the observation point is
on the cusp curve. the upper branch of the hyperbola is now tangent to the parabola of Eq.
(12) where Eq. (12) and the parabola representing H = O intersect. The ooint where the
upper branch of the hyperbola is tangent to the parabola gives the location of the doubly
degenerate ray in the exit plane; the intersection of the lower branch of the hyperbola with
the parabola gives the location of the single ray. As the observation point moves outside
the cusp curve, Ve = 0.035, the branch of the hyperbola that was tangent to the parabola no
longer intersects the parabola, leaving only the intersection of the lower branch and only
one real ray location.

For observation points outside the cusp curve the steepest decent contour used in
the asymptotic approximation of P(w7, w}) must be moved off the real axis!9-20. The
contour passes through the one real solution on the real axis but can only pass through one
of the complex conjugate solutions. A complex ray can be associated with the complex
saddle point that contributes to the amplitude outside the cusp curve20. This complex ray
contribution decays exponentially as the observation point moves away from the cusp
curve. However, near the cusp curve this ray is strong enough to interfere destructively
with the real ray and cause nulls in the cw wavefield. A line of minima can be seen in Fig.
4 just outside of the cusp curve. These minima are due to the interference between the real
ray and the complex ray20. The region where no complex rays contribute to the wavefield

is marked by the Stokes set of the Pearcey function20




P =wil (16)

Between the Stokes set and the cusp curve there is one real and one complex ray
contributing to the wavefield. Outside of the Stokes set only the real ray contributes to the
wavefield. There is no more interference evident outside of the Stokes set. The three

regions of space defined by the cusp curve and Stokes set are shown in Fig. 6.
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Figure. 6 A plane containing a TCC is divided 1nto three regions by the cusp curve and the
Stokes set. I) Inside the cusp curve there are three real rays to any point in the plane.
IT) Between the two curves there is one real ray and one imaginary ray to any point.

III) Inside the Stokes curve there is only one real ray to any point.
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2.3 AN EXPERIMENT TO IMAGE THE TRANSVERSE CUSP
DIFFRACTION CATASTROPHE FORMED BY REFLECTION FROM A
CURVED METAL SURFACE IN WATER

Experiments were performed to image the wavefield reflected by a surface having
the local shape given by Eq. (3). These experiments were carried out in a water tank 230
cm long, 57 cm wide, and 50 cm deep. A source was located at one end of the tank and the
signal was reflected by a curved metal surface at the other end of the tank. A receiver was
mounted on a two-axis positioner located near the center of the tank to sample the reflected
waverield. A schematic of the experimental set up is shown in Fig. 7.

To image the acoustical wavefield the signal from the receiving hydrophone was
amplified and rectified. A sample-and-hold circuit converted the amplitude of the the
rectified acoustical signal to a proportional dc level. An analog to digital data acquisition
board in a Macintosh II computer stored the dc level from the sample-and-hold as a twelve
bit digital value. Once the digital level was stored, the position of the receiver was changed
by the computer to build a raster picture of the reflected wavefield. The digital levels were
displayed as a gray-scale picture using 256 gray-levels.

A Panametrics V302 focused transducer with a IMHz resonant frequency was used
in the acoustical experiments to approximate a point source. A quadratic approximation of
the phase of the source signal in the exit plane was found by fitting the phase of the
outgoing wavefront from the source transducer with an approximation for the phase of a
spherical wavefront as shown in Appendix B. The quadratic approximation of the phase
was used to determine zg for the source signal in the exit plane. The acoustical receiver was
a DAPCO (DAPCO Industries. Inc. 199 Ethan Allen Highway, Ridgefield, Conn. 06877)
bent needle hydrophone. This hydrophone has a 90° bend in the needle allowing the active
element to be pointed into the reflected wavefield. The outer diameter of the needle case is
= Imm. The hydrophone frequency response curve is fairly flat in the region from

0.5MHz up to 4MHz.
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Figure. 7 A schematic diagram of the experimental set up.




TLE L Mured surface parameters used in theoretical calculations.

| eweiweteneny |

(x,y) = hix2 + hoxy2 + h3y2 + hax + hsy

— M

Parameters Surface 1 Surface 2
hy -0.000310 cm-! 0.00431 cm-1
hy -0.00117 cm2 0.00276 cm~2
h3 —0.01945 cm-1 -0.0173 cm-1
hy -0.154 -0.0645
hs -0.00301 —-0.00169
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Tone bursts were used to simulate a cw signal in the acoustical experiments. By
using bursts the source signal could be separated from the reflection. Reflections from the
sides and bottom of the tank and from the top of the water arrive at different imes and
could also be gated out. Bursts were long enough that end effects due to the finite
difference in arrival times of the signals propagating along different rays were not sampled.
The gate used to set the sample region of the reflected signal was positioned to gate out any
spurious reflections from the tank. Figure 8 shows some representative scattered tone
bursts. Note the build up at both ends of tone bursts 1, 2, 4, and 5 due to the finite
difference in the arrival times of the different rays. Tone burst 3 does not show the same
build up as it is from the one ray region of the diffraction pattern.

An HP9125A calculator plotter was modified to allow control of the plotter arm by
two external analog sources. Mounted vertically over the water tank, the plotter was used
as a two-axis positioner for the receiver sampling the reflected wavefield. The position of
the receiver was controlled by connecting the analog inputs of the plotter to two digital to
analog converters in the Macintosh II computer. A raster scan of the wavefield was
produced by taking data on a grid of points in the observation plane and directly relating the
grid points to pixels on the screen of the Macintosh. Each pixel was set to a gray level
directly related to the amplitude of the reflected signal at the position in the observation
plane represented by that pixel. Lighter gray levels represent larger amplitudes with white
being the highest value and black the lowest.

In the experimental setup the acoustical source and receiver could be replaced with
an optical source and receiver. The optical source was a HeNe laser attached to a small
diameter (200 pm core diameter) optical fiber. A phototransistor was used as the optical
receiver. The optical source was positioned at the focal point of the acoustical source,
while the optical receiver was placed on the two-axis positioner. The phototransistor circuit
provided dc signals proportional to the intensity of the reflected optical wavefield at each

point in a raster scan. These signals were used to form a gray scale picture of the optical




Figure. 8 a) A gray-scale picture of the acoustical diffraction pattern in the observation
plane with f = 809 kHz, z = 66.3 cm, and zg = 116.6 cm. The white dots on the picture
mark the position of the representative time traces shown in (b). b) Representative ime
traces of the bursts reflected from the surface. Trace three originates in a region with only
one real ray. Trace one is in the region where there is one real ray and one imaginary ray.
Traces two, four, and five contain three real rays. Traces two and four are along the

symmetry axis where two of the rays arrive at the same time.
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wavefield in the same manner as in the acoustical experiments. The geometry of the optical
and acoustical experiments was held constant allowing the imaging of the TCC for
wavelengths separated by four orders of magnitude. Due to the short wavelength of the
light in water (A = 430 nm), the diffraction pattern is not observable in the optical
experiments. However, the imaged optical wavefields do exhibit a sharp increase in
intensity at the caustic that can be compared to calculated caustics.

The reflecting surface used was made of thin Apollo metal (Apc;uo Metals Ltd.,
1001 14th Ave., Bethlehem, PA 18018) bent in the general shape given by Eq. (3). The
sheet used for the surface was 15 mil thick. The acoustical reflection coefficient for the 15
mil Apollo metal in the frequency range from 0.5MHz to 2MHz is estimated in Appendix C
to be between 0.8 and 0.95 thus the Apollo metal is a good acoustical mirror. Apollo metal
has a polished surface making it a good optical as well as acoustical reflector. The Apollo
metal was flexible enough to be bent into the desired shape.

A surface height measurement of the reflecting surface was made on a grid of points
that included the area generating the cusp point. A mill with a digital readout showing the
relative position of the mill bit in a plane was used to make the measurement. The vertical
position was given by a dial indicator mounted to show the vertical position of the mill bed.
With the surface mounted square on the mill bed, the vertical position was adjusted at each
point on the grid until a reference indicator mounted in the bit holder read a preset reference
value. The reference indicator assured that each vertical position could be directly related to
a zero position on the surface. The surface was not deformed by the pressure of the
reference indicator.

The data obtained in the surface measurement was fit to h(x,y) = h1x2 + hzxy2 +
h3y2 + hgx + hsy to find the local shape of the surface. The linear terms were included in
the fit to account for any linear offset or tilt in the surface. Though they have no bearing o
the comparison of the data to the theory they can have a significant effect on the fit

parameters. A multiple regression least squares fit was used on the data (the PROC GLM

31




32

routine of SAS; SAS Institute, Statistical Analysis System). The surface parameters found
for two different surfaces are given in Table I. A plot of the surface generated by the
values measured for the h; of surface 1 is given in Fig. 9. The measured values of the

surface height parameters were used in comparing the theory to the data discussed below.




Figure. 9 The measured surface parameters hj - hs of surface 1 were used to produce a 3D

plot of the surface used in the experiment. The actual size of the surface was 35 cm long

and 20.5 cm wide.
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2.4 RESULTS: COMPARISON OF THE ACOUSTICAL DIFFRACTION
CATASTROPHE TO THEORETICAL CALCULATIONS OF THE
EXPECTED DIFFRACTION PATTERN

A gray scale picture of the acoustical diffraction pattern produced by reflecting
1004kHz sound from surface 1 of Table I is shown in Fig 10a. The pattern exhibits the
symmetry about the horizontal axis of a cusp caustic with no shear distortion. The contour
plot of Fig. 10a in shown in Fig 10b. Note that none of the minima of the diffraction
pattern are along the symmetry axis. This agrees with the location of the minima of the
theoretical diffraction pattern IP(w, wi)l in Fig. 4. The shapes of the contours in Fig 10b
are the same relative shapes as the corresponding contours in Fig 4. Thus the acoustical
diffraction patterns exhibit the general characteristics of a cusp diffraction pattern.

Figure 11 shows a complimentary set of acoustical and optical data. The acoustical
source is an 805kHz sighal, and the reflecting surface is surface 1 of Table I. A contour
plot of IP(w7,w )l was used in Fig 11b to compare a calculation of the theoretical
diffraction pattern using the parameters defined by the experimental setup to the
experimental picture. Using the measured surface parameters, the frequency, and the
relative location in the raster scan, and Egs. (7) and (8) a calculation of {P(w2,w)l could be
scaled to give IP(u,v)l. The converted IP(w2,w})l = IP(u,v)! calculation was overlain on
the acoustical pictures by shading pixels corresponding to given values of IP(u,v)l. A

calculation of the cusp curve in terms of wi and w2
8
-7 wpd = wy2, 17)

is also overlain on the data to mark the transition from the three ray to the one ray region.
Outside but near the cusp curve shown in the acoustical overlay in Fig. 11b there is
a line of minima in the acoustical data. These minima are due to interference between a

complex ray and a real ray. Further away from the cusp curve the interference weakens as




Figure. 10 a) A gray scale picture of the acoustical diffraction pattern in the observation
plane due to scattering 1004kHz sound from surface 1 with z=80.5cm and z;=113.2
cm. The picture shows that the diffraction pattern has the expected symmetry about the
horizontal axis of the cusp caustic. Note the line of minima along the outside of the
acoustical diffraction pattern due to the interference between a real ray and an imaginary
ray. b) A contour plot of the (a). note that the minima of the pattern are not located along
the symmetry axis. There is general agreement between the shapes of the experimental

contours and those of the theoretical diftraction pattern in Fig. 4.
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the exponential decay of the complex ray starts to dominate. Outside the Stokes set drawn
on the data there is no interference evident showing that only one ray exists in this region.

In the comparison of the theory to the data, the optical data in Fig 11c was evaluated
first. The optical cusp was calculated using Eq. (14) with U set to zero. Since the same
source location was used for both the optical and acoustical data, the source coordinates are
set to zero in the dimensionless coordinates Ue and Ve, as they will only shift the location
of the cusp point. To calculate the cusp curve overlain on the optical data, Eq. (14) was
evaluated and each point in the calculation scaled to correspond to pixels on the computer
screen. Near the cusp point there is good agreement between the optical data and the
overlain cusp curve. The location of the cusp point found in the optical comparison was
used as a starting point for the acoustical comparison.

To evaluate the acoustical data in Fig 11a, IP(u,v)l was overlain on the acoustical
picture, Fig 11b. The location of the cusp point found in the optical comparison was used
as a starting point for the acoustical comparison. In the acoustical comparisons the location
of the acoustical cusp point is varied to get the best agreement near the cusp point between
the maxima in the scaled Pearcey contours and the acoustical pictures. The location of the
acoustical cusp point is different from that of the optical cusp point. The difference in the
horizontal position is Au = 13 mm and in the verticai direction Av = 4 mm. This difference
could be explained by differences in the location in the source plane of the acoustical and
optical source points. The location of the acoustical focus is estimated to be along a line
from the center of the transducer and a deviation of 2.5 cm in either direction can change
the location of the cusp point in the observation plane by 1.5 cm. In the region where the
calculation of IP(w3,wy)l is best (near the cusp point), the separation of the maxima of the
contours agrees well with the separation of the maxima in the acoustical data. Moving
away from the cusp point the agreement deteriorates as in the optical comparison. This

comparison of theory and data allowed only the location of the acoustical cusp point relative
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Figure. 11 Gray-scale pictures of the acoustical and corresponding optical data for
wavefronts reflected from surface 1. A centour plot of P(wp, wi) is overlaid on the
acoustical data showing good agreement between theory and experiment. The last picture
is the optical data with the a calculated cusp curve overlain. The frequency of the acoustical

source signal was 805kHz,z =67.3 cmand zg=111.7 cm.
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to the optical cusp point to vary, all other parameters in the calculation of the theoretical
diffraction pattern were determined by the experimental setup.

To show that the wavefront produces a diffraction pattern that scales properly with
frequency, the amplitude along the symmetry axis of two diffraction catastrophes produced
by surface 1 with different frequencies are compared to a calculation of IP(w2,0)l. The
amplitude along the axis is normalized to the largest amplitude for each data set to account
for any frequency response of the experimental equipment. Figure 12 shows plots of data
for two frequencies, 1.5MHz and 1MHz, along with a calculation of IP(w2,0)l. The cusp
point is assumed to be at the origin in each of the plots. For the data plots, positions in the
raster scan (u) are found using the location of the cusp point as the origin. Equation (7),
the frequency, and h; are then used to relate the scan positions to wp. Note that the
positions and relative amplitudes of the first three maxima and minima of the data for both
frequencies agree well with the calculation of IP(w2,0)!.

When the surface parameter hy is positive, as for surface 2 of Table I, the opening
rate of the caustic D, Eq. (15a), will diverge for a particular value of ze. Figure 13 shows
a plot of IDT! vs. receiver distance (z) for the two surfaces in Table I and zg = 110 cm. The
IDTl for surface 1 is well behaved for all receiver locations. Surface 1 has a negative hj
parameter, thus by' = —2h; + 1/(2z¢) is always nonzero for positive source and receiver
positions. Surface 2, however, has a positive h| coefficient. This allows by’ to go to zero
for particular combinations of source and receiver plane distances. Figure 13 shows this
divergence for surface 2. Using the value of h in Table I for surface 2 and a source
distance of zg = 110 cm, b;' goes to zero at z = zy = 122.7 cm. The opening rate goes as
1/(b1")2 and diverges quickly as z approaches z.

Figure 14 shows an example of the acoustical diffraction pattern produced by
reflection from surface 2. The source distance zg = 141.4 cm and receiver distance z =
67.6 cm were constrained in the water tank, used for the experiment, to the region near

where by’ went to zero. From Fig. 13 it can be seen that a small error in z or conversely zg




can produce a large error in D. The uncertainty in Dt makes a meaningful comparison of

the acoustical data to a calculated diffraction pattern difficult.
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Figure. 12 The normalized amplitude along the symmetry axis of acoustical diffraction
patterns for IMHz and 1.5MHz and a calculation of P(w3, 0) are plotted vs. wa. The
position of the acoustical data 1s scaled using Eq. (13). The locations and relative
amplitudes of the first three maxima and minima are in good agreement. The acoustical

data was taken with z =73 cmand zg = 110.5 cm.
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Figure. 13 Comparison of the unitless opening rate given in Eq. (22a) vs. observation
distance z, for surface 1 and surface 2. The source distance used in the calculation was a
typical source distance for the experimental setup zg= 110 cm. Note that the rapid
divergence of the opening rate for surface 2 with h; >0 makes comparisons of theory and

experiment very sensitive to errors in either the observation or source distances.




10.8 cm

Figure. 14 A gray scale image of the acoustical diffraction pattern due to scattering of
1MHz sound from surface 2. The source and observation distances were z = 67.6 cm, zg =
141.4 cm. The sensitivity of the calculated opening rate of this diffraction catastrophe
made a meaningful comparison of the theory to the data difficult. The diffraction

catastrophe is shown with the same horizontal and vertical scale as in Fig. 11.
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2.5 CONCLUSION AND DISCUSSION

The wavefront that should form a TCC is given by Eq. (1). An evaluation of the
propagation integral for this wavefront shows that the diffraction pattern produced is
described by the canonical diffraction integral of catastrophe theory for a cusp caustic.
Appendix A describes in general how the wavefront can be fermed by reflection of a point
source from a curved surface of local shape given by Eq. (3). The reflected wavefront
should display the characteristics of the cusp caustic in an observation plane transverse to
the direction of propagation.

In an observation plane the TCC exhibits the characteristics of a cusp caustic. The
diffraction pattern is described by the Pearcey function, Eq. (9). The caustic curve, evident
for large k, is given by Eq. (14) or Eq. (17). The separation of the maxima and minima
along the symmetry axis scales with wave number like k1/2, Just outside the caustic are
interference minima that can be explained by interference between a real ray from the
wavefront and a complex ray that decays exponentially away from the caustic. Inside a
region marked by the Stokes set there will only be the real ray from the wavefront and
therefor no interference.

Comparisons of theoretical calculations and experimental images of the diffraction
pattern were made for surface 1 having the shape parameters listed in Table I. The caustic
produced by the wavefront was imaged using an optical source (large k). Comparisons of
the calculated cusp curve and the optical images agreed well near the cusp point as shown
in Fig. (11c). With the cusp point located by the optical comparison there were no variable
parameters for the acoustical comparison. The diffraction pattern seen in the acoustical
images is described well near the cusp point by the Pearcey function, Fig. (11b).
Interference nulls are evident outside but near to the caustic. Inside the Stokes set there are
no interference nulls. Comparison of the locations and normalized amplitudes of the
maxima and minima along the symmetry axis of acoustical images with different

frequencies show the expected scaling of the diffraction pattern with frequency. Fig. (12).




The general agreement between the characteristics of the theoretical and experimental
diffraction patterns confirms that the proposed wavefront produces a TCC in an
observation plane transverse to the direction of propagation.

Some of the sources of uncertainties that may iimit the quality of the agreement
between the measured and theoretical diffraction patterns in Fig. (11b) will now be noted.
The agreement worsens away from the cusp point as u increases. This degradation is also
evident in Fig. (12). The following difficulties in the experiment are plausible causes of
this problem: (i) The form of the fitted equation in Table I is only applicable to the region of
the surface where rays are reflected to the region of the cusp point. Qutside of this region,
deviations in the surface from that form would cause deviations in the pattern predicted by
Eq. (6). (ii) As evident from the phase measurements in Appendix B, the wavefront
radiated from the source did not have phase properties identical to those of a true point
source. This may be a consequence of some beam-like properties of the radiated
wavefront. The measured phase properties suggest there may be some uncertainty in the
true location of the effective source point. The analysis given in Appendix D suggests that
the use of the paraxial approximation does not introduce significant error in the theory for

the measurements shown.
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APPENDIX A: DERIVATION OF THE DIFFRACTION INTEGRAL FOR
THE REFLECTING OF SOUND PRODUCED BY A POINT SOURCE OFF
OF A CURVED SURFACE OF HEIGHT h(x, y).

This appendix gives the general paraxial approximation of the field due to the
reflection of a spherical source signal from a surface of height h(x,y). The geometry for
this general reflection problem is shown in Fig. A1. For a point source in the source plane

the incident pressure in the exit plane is given by Eq (A1)21

_ eikRS
ps(x.y) =p, R, (A1)

where pg is the strength of the source, k is the wavenumber (k = 21t/A), and Ry is the
distance from the point source to a point in the exit plane. The Fresnel approximation to the

phase and denominator of Eq. (A1) is given by Eqs. (A2) and (A3) respectively

)(2+y2

2zS

u v
kRszkrS—k(—z-:-x+z—ssy)+k (A2)

R.=r, (A3)

S S

where r5 is the distance from the source point in the source plane to the origin in the exit
plane. Paraxially the phase delay for the propagation from the exit plane to a reflecting
surface and back to the exit plane is given by the distance straight down from the exit plane
to the surface and straight back up from the surface to the exit plane

Ad(x, y) = —2h(x,y), (A4)
where h(xy) is the height of the reflecting surface in the exit plane. In the exit plane the
portion of the wavefront reflecting from the lower areas of the surface will be phase
advanced, due to a longer propagation distance to and from the surface, relative to the
portions reflecting from the higher parts of the surface. If h(xy) is considered positive
when it is in front of the exit plane and negative when it is behind, a signal that reflects

from a positive region of the surface will have a propagation distance, reiative to the
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Exit Observation Source

Figure. A1 The geometry used in the analysis of the diffraction produced by reflection of a

point source at S from a curved surface in the exit plane. The observation point is O.




propagation distance to the exit plane, that is shorter by —2h(x,y) while a signal that reflects
from a negative portion of the surface will have a longer propagation distance by 2lh(x,y)! =
—2h(x,y), thus the minus sign in Eq. (A4). Using Egs. (A1) through (A4) the reflected

pressure is paraxially approximated by

—ikig u v x2 4+ v2
Pr(x.y) = po§ Sr—exp [ -ix{ Zxtz Y ——zy— + 20 } ] (AS)
S

where & is the acoustical reflection coefficient for the reflecting surface.
The Rayleigh-Sommerfeld integral relates the pressure in the observation plane to p,
in the exit plane through

oo
o0

pev =3 | [ pr0ey) 3[R axay. (A6)

—_00

where R is the distance from a point in the exit plane to a point in the observation plane,

R=Vz2 + (x —u)2 + (y - v)2. This integral may be approximated in the far field by

pluy) = = Hp (x.y) cosy, il dxdy (A7)
’ 2ni e R ’

where Y is the angle between the z axis and R. The paraxial approximation is valid for
wavefronts travelling approximately parallel to the z axis, thus cos) can be approximated
by unity. Using the Fresnel approximation for the phase and denominator due to the

propagation to the observation plane gives

kR _ikr 242
-cR—:eTexp[—ik{%X"'—;-y—}"%}]* (A8)

where 1 is the distance from a point in the observation plane to the origin of the exit plane.

The pressure in the observation plane is now given by
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pa = po & 3 22 [ fexp { i+ 280 + (34 )y

2 2
_ _X_T*')’_ (% + 21;) + 2h(x,y)] }dxdy. (A9)

A set of effective coordinates related to the source and observation plane positions by 14
11
=\— M = E —S . = _!. S
Ze-(z + ZS) b Ug=T+575 Ve=—+-2,  (Al0abg)

can be used to describe the reflected wavefield. In terms of the effective coordinates the
pressure is

k e-ik(r+rg)
PUe.Ve) = Pobm o —

2 2
x| |exp] —ik{Uex + Vey XAy, 2h(x,y)} | dxdy, (A11)
2z¢

where Ug, Ve, and z are given by Eqs. (A10a,b,and c).

The above result for the pressure in an observation plane due to the reflection from
a surface of height h(x,y) can now be specialized to a surface with h(x,y) given by Eq. (3).
For h(x,y) with a small slope Eq. (A11) becomes

e-ik(r+rg)
Iy

P(Ue.Ve) = pofons ffe“w dxdy. (A12)

where the reduced distance function ¢ is given by Eq. (5). This is in the same form as Eq.
(5) of reference 6 and the relation to the Pearcey function follows from the steps outlined in
Sec. II of reference 6. The result gives Eq. (6) which was originally derived in summary

form in Ref. 14.
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APPENDIX B: A QUADRATIC APPROXIMATION OF THE PHASE OF
THE SIGNAL PRODUCED BY THE SOURCE TRANSDUCER USED TO
ESTIMATE THE EFFECTIVE SOURCE DISTANCE zg

The analysis given in Appendix A assumes a point source. However, in the
experiments discussed in section 2.3 a point source was not available and a focused source
was used to approximate a point source. The location of the focus of the source transducer
was used as the source location in the acoustical experiments. In order to find the focal
length zf of the ransducer, the phase of the outgoing wavefront was recorded at different
points along an axis in an observation plane a distance zT from the transducer and then fit to
a quadratic approximation for the phase of a spherical wavefront along a line. Figure B1
shows the experimental setup for this measurement. Assuming that the focus of the
transducer is a point focus, the outgoing wavefronts of constant phase will be spherical.
Figure B2 shows a schematic of the outgoing wavefronts and the axis along which the
phase measurements are taken. Assuming an exp(—it) time convention, the spatial phase
of the outgoing spherical wavefronts is given by exp(iy), where y = kr. Along the x axis
in Fig B2, a quadratic approximation of y may be obtained using the first two terms of a

binomial expansinn of r = (zg2 + x2)1/2
w=kVzd + 12 = kzg + o x2 + O(xY) - (B1)
S

where it is assumed that zg » x.

The first term, kzg, in the expansion of y can not be used to find zg. The phase of
the wavefront found is given on an interval from —x 10 © thus any common phase delay due
to a common path length (for instance zg) will be lost in thz measurement. Only the
variation of the phase caused by the changing path length along the x axis can be used to
find zg. If the phase is not collected symmetrically about the z axis it will introduce a term
linear in x in the phase approximation. To skow this, replace x in Eq (B1) with x = xg +

x', the phase is then given by
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Figure Bl The experin:ental set up for estimating the focal length z¢ of a transducer

focused to a point.
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Figure. B2 To find the position of the focus of the source transducer. the phase of the
outgoing wavefront from the transducer was measured along a line. The phase data was fit
to an equation that was quadratic in the position along the line. The coefficient of the

quadratic term in the fit equation gives the distance to the focus from the observation plane.
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k kxo _,
V= kzg + 3o x02 5 K 45 x2, (B2)

where the coefficient of x'2 is used to find zs. Knowing zg the focal length of the
transducer is given by zf = zT — z;.

Experiments to locate the focus were carried out using the geometry shown in Fig.
B1. A long, IMHz tone bu st was sampled in a region of the burst where the signal
approximated a steady state signal. Tone bursts were used to separate the direct signal
from scattered signals that had different arrival times at the hydrophone. Using the travel
time of the front edge of the burst and the speed of sound in water at 18° C, the distance zT
to the transducer was zT = ¢/t, where ¢ = 0.148 x 106 cm/s. A time record of the sampled
region of the tone burst was recorded on an Analogicg Data Precision® Data 6000
(D6000). The D6000 was programmed to take a Fast Fourier Transform of the data and
save the phase of the 1MHz frequency component at each position along the x axis. Thus
the trend of the phase of the incident wavefront along the x axis could be recorded. Note
that the phase data on the D6000 forms an inverted parabola due to use of the exp(+iwt)
time convention. For the exp(—iwt) time convention the data shown in Fig. B3 forms an
upright parabola. The phase data from the D6000 was transformed to the exp(~iwt) [the
phase was multiplied by —1] time convention and fit with a quadratic equation in x. The fits
of the phase data for four different values of zT are shown in Table B1. The phase data and
corresponding fit for the zT = 117.4 cm is shown in Fig. B3. When the values for zf from
Table B1 were fit with a straight line they give a relation for the effective location of the
focal point of the source transducer for an observation plane a distance zt away, zf (cm) =
5.825 cm + 0.0928 zt (cm). This relation was used to approximate the tocal length, zf, of
the source transducer for the signal radiated to a given distance, zt. The distance zT was
taken to be the distance from the transducer to the reflecting surface. The effective focal
point was then used to approximate the effective point source distance in the evaluation of

the acoustical data, zg = zT - z1. The weak dependance of the apparent focal length z¢ on zT
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is evidence that the wavefront leaving the tocus does not fully simulate the wavefront
leaving a point source. This may be a consequence of the directionality or beam-like

properties of the source.
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TABLE B1. Results of quadratic fits to the phase of the outgoing wavefront produced by

the source transducer locating the focus.

W = a + bx +cx?2

z1 (cm) zs (cm) zf (cm) a b (cm1) ¢ (cm-2)
37.1 27.88 9.22 0.137 4.193 -0.761
85.8 71.82 13.98 -2.018 2.832 -0.233
105.6 91.20 14.40 —0.209 2.525 —0.233
117.4 100.68 16.72 -8.238 2.459 -0.211
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Ficure B3 The experimentally measured phase of the outgoing wavefront from the

transducer located z = 117.4 ¢m from the observation plane. A quadratic, shown overlain

on the data, was fit to the data to find the distance from the observation plane to the

effective focal point.
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APPENDIX C:ESTIMATION OF REFLECTION COEFFICIENT FOR THE
METALLIC SHEET

The acoustical reflection coefficient of the reflecting surface was estimated by
considering only the inertial impedance of the surface to the incident wavefront22. The
acoustical reflection coefficient is the ratio of the reflected pressure to the incident pressure
r = Ip;//ipjl. This is related to the power reflection coefficient ® by R =r2. For a lossless
plate the sum of the reflected power and the transmitted power must equal the incident
power, thus ® + T = 1, where T = Ip|2/Ip;i2 is the power transmission coefficient. For a

slab that is bounded on both sides by water the plane wave transmission loss is given by22
-1
woy=(|1 +%?cos ai])™. (1)
C

where Zg) is the acoustic impedance of the slab approximated below, p = 0.9986 gm/cm3
and ¢ = 0.148 x 10 cm/s are the density and speed of sound in water at 18° C, and ©; is

the angle of incidence of a plane wave. Thus the reflection coefficient is
17 -1 )
ROy = 1—(|1+§Ezlcos®i|) , (C2)

using the relation between T and R. This approximation assumes that the thickness of the
slab Ig1 « Asy/4 and [Zs)/Zyocal(back)] « 2n(lg/Aw), where Ag) is the wavelength of sound in
the slab, Zocai(back) is the local specific acoustic impedance Zjgcal(back) = pwCw, and Ay,
cw, and pyw are the wavelength and speed of sound in water and the density of water
respectively. The above assumptions give the components of the fluid velocity normal to
the slab on each side of the slab equal to each other vfront = Vback = Vsl

If the slab i. considered to be a perfectly limp plate, the acoustic impedance of the
slab Zg) is due to the inertial resistance of the mass of the plate to the pressure of the sound

field. From Newton's second law
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d
Mg} "&S“l = Pfront — Pback: (C3)

where mg) = 0.317 gm/cm? is the mass per unit area of the slab and vy is the velocity of the
the slab due to the difference in pressure between the front face and the back face of the
slab, pfront — Pback- With a time dependence of the form exp(-icwt) for the velocity, Eq.

(C3) becomes, with @ = 2xf

~img2ntfvg) = Pfront — Pbacks (C4)

which defines the inertial impedance of the slab22

RO =1 [ |1 +5 72 o5 g ]!
pc

2 -1
=1-[1+ (@—fﬂﬂ) cos2(©)] ™. (C6)
2pc
At normal incidence ©j; = 0 the ratio of the incident to reflected pressure is r = Ri2
21-1
R(9i=0)=1-[1+(2%2'§ﬂ) I €

Figure C1 shows a calculation of r vs f using Eq. (C7). The acoustical reflection
coefficient approximated in the manner described above is positive and goes to
r = 1 as the frequency increases. For the frequency range used in the acoustical
experiments the range of r approximated from the calculation is 0.8 <r <0.95. The
approximation used was for a flat slab with normally incident acoustical plane waves.
However, the reflecting surface was curved and the source was approximately a point
source. This could bring the approximation into question. To test the validity of the
approximations used to calculate r the incident signal and transmitted signals were
measured for a 900 kHz tone burst. The incident signal was 1.4 Vpp while the transmitted

signal was 0.15 Vpp giving a transmission coefficient t = 0.107. This is related to the
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reflection coefficient by r = (1 — t2)12 = 0.994. This measured value of r at 900 kHz is
very near the value given in Fig. C1 for the approximation of the reflection coefficient, r =

0.987.
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Figure C1 A plot of the reflection coefficient due to inertial impedance of the material used
to form the reflecting surface used in the experiments. Above 500kHz the reflection

coefficient is approximated by 1.
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APPENDIX D: THE PARAXIAL APPROXIMATION AND
QUANTITATIVE AND QUALITATIVE ERRORS

The analysis that classifies the caustic formed by W(x,y) in Eq. (1) or by the
reflection of the wavefront produced by a point source of sound from a surface with the

local shape given by Eq. (3) involves the paraxial approximation of the distance function

d(x,y,u,v)

D(x,y.uv) = { [z - WP +u-x]2+[v y]? }1/2. (D1)
The distance function ® represents the distance from a point on the wavefront (x,y) to a
point in an observation plane (u,v) a distance z from the exit plane. The qualitative
behavior of the wavefront in the observation plane is described by the caustic classified by
the singularities of the mapping of the wavefront in the exit plane to the wavefront in the

observation plane where the singularities are given by

od b 02d 92 32d\2
>0 =0 32 372 (axay) (D2)
The reduced distance function ¢(x,y,u,v) is the paraxial approximation of ®(x,y,u,v)
—x)2 —v)2
o(x,y,uv) =z — W(x,y) + (u—x) 2: v -y . (D3)

Use of this approximation in Eq. (D2) yields the transverse cusp caustic surface given by
Eq. (14) and Eq. (15).

Dangelmayr and Wright consider the paraxial approximation of the distance
function that forms a hyperbolic umbilic caustic 23. They show that the classification of the
caustic given by the paraxial approximation of the distance function ¢ s the same as the
classification found using the full distance function ®. The transverse cusp caustic
embedded in an hyperbolic umbilic is therefor also paraxially determined. Thus ¢, the
paraxial approximation of ®, should give the same classification for the caustic as ® itself
and no qualitative information about the caustic surface is lost in the paraxial

approximation.
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The classification of the caustic is not affected by the size of the terms that are
ignored in the paraxial approximation, however, for the paraxial approximation to be valid

these terms must be small. For the distance function & of Eq. (D1) the paraxial
approximation is given by the binomial expansion of Eq. (D1), with W(x,y) / z « 1, to first

order in b where

_(u-x)2+ (v-y)?

b 2z

(D5)

and terms of order b2 and higher are ignored. When the next higher order term in b is

considered, the approximation to the distance function has the form

P(x,y,u,v) = 0(x,y,u,v) + 0c(x,y,u,v), (D6)

where the leading correction term is

—x)2 )
be(xy.uy) = —LE=X) 2: (v - y)?]

v — x)2 _v)2
Xi [(U X) 4:2(\/ y) 1 _w(:l) }, (D7)

where terms of O{[W(x,y)/z]?} have been dropped as W(x,y) / z « 1. Conditions, from

the form of ¢, for the paraxial approximation to the distance function to lead to negligible

error in the caustic location near the cusp point are noted below.

To show that this term ¢ is small consider the wavefront given in Eq. (1). The
wavefront produced by reflecting a spherical wavefront from a surface with the local shape
of Eq. (3) has the local shape of Eq. (1) if the source is located at the origin (ug=0, vg=0).

With a distant source, the paraxially approximated reflected wavefront is

W(x,y) = a1x2 + arxy? + azy?: (D8)

where
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ay=-2hp+ 2—12; , ap=-2hy, a3=—2h3 + ilz‘s . (D9a,b.c)

The location in the exit plane of the rays to the cusp point i< (Xcp, Ycp) With ycp = 0 and x¢p
=-b3/as, where

1
bi=ai+o; . (D10)

The location of the cusp point in the observation plane is given v = 0 and Eq. (15b) with b;’

— bjand a2’ — ay, and ucp = —2zbybs/ap. With the cusp point as defined above, the

correction term to the reduced distance function at the cusp point is

(ucp —z Xcp)? [(Ucn "2’(CD)2 - W(xZCD’O) ] (D11)

Oc(XcpYepsUcpsVep) = —

It has been argued!3 that this correction will be negligible if each of the terms in the square

bracket is « 1. At the cusp point W(xcp,0) / z is given by
Woio0] _[awog]

Di12
282 (D12)
The second term in the square bracket in Eq. (D11) can be written
(Ucp — Xcp)? —2zb1b3 b3 2zb L N
(hcp —xep)? _ (220109, 53 ) (42 = (229 oy + 12 02
- (9%?)2« L. D13)

For surface 1 in Table 1 aﬂd the representative source and receiver distances z = 68 cm and
zs = 110 cm the inequalities in Egs. (D12) and (D13) are seen to hold with a1bj2/za)? =
0.0357 and (b3a] / az)? = 0.0125. Thus for the distances used in the experiment the
paraxial approximation ¢ of the distance function @ is a valid approximation.

In addition to these geometric conditions, if the phase of the wavefield is to be
accurately approximated, it is necessary for k¢ « 1 with x and y corresponding to the rays

to the observation point (u,v,z).
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CHAPTER THREE
OBSERVATION OF THE TRANSIENT CHARACTERISTICS AND THE
MERGING OF RAYS FOR THE WAVEFIELD FORMING THE
TRANSVERSE CUSP CAUSTIC

3.1 INTRODUCTION

Wavefronts reflected or refracted by curved surfaces can form caustics that are the
focal envelopes of rays from the outgoing wavefront. As a caustic is crossed from the
bright side in an observation plane to the dark side at least two rays from the wavefront
merge and are lost. When a transient source is used, the arrivals of the transient signals
associated with merging rays also merge and disappear after the caustic is crossed !. The
more commonly investigated situation is the use of catastrophe theory to associate
structurally stable caustics with canonical diffraction integrals for steady state wavefields 2.
The structural stability of the caustics means that the classification of the caustic survives
small perturbations of the curved surface or the propagating medium. The emphasis of the
present chapter is on the merging of transient signals for one example of a structurally
stable caustic: a transverse cusp caustic. The signals are associated with reflections from a
curved metal surface in water. The investigation of the merging of such echoes may prove
useful for inferring the local shape of the reflecting surtace.

Prior to considering transverse cusps, the merging of transient arrivals for a simpler
situation, a longitudinal cusp, will be discussed. Figure 1 shows a longitudinal cusp
caustic and thc wavefront that propagates to form the caustic. This figure will be used to
illustrate the merging of rays on the caustic. The longitudinal (axial) cusp caustic was
studied by Pearcey in connection with the cylindrical aberration?. The cusp caustic
associated with the cylindrical aberration opens parallel to the direction of propagation of

the wavefront and 1s described by the general equation
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DL(z - zcp)? = X2, (1)
where D is the opening rate of the cusp curve with units of 1/distance and x and z are
shown in Fig. 1. The wavefront that produces the longitudinal cusp caustic is curved along
one direction?. This wavefront is mirror symmetric about an axis along the direction of
propagation and forms a caustic that is also mirror symmetric along the same axis. The
wavefront in Fig. 1 is given by W(x) = Wo.x2/[x2 + (Wo/B)] where B and W, > 0. The
cusp curve formed by the wavefront W(x) is described by Eq. (1) above with z¢p = 1/(2f)
and Dy = 8/(27Kzcp), where K = 1 + 1/(BW..) is the coefficient of cylindrical abberation.
In the bright region inside the cusp curve, point A, there are thrce rays from the wavefront
and outside the cusp curve in the dark region, point C, there is only one ray from the
wavefront. In the center of the caustic at point A the three rays from the wavefront are d,
e, and f. Ray paths d and f represent the same path lengths to the observation point A
which are shorter then ray path e. Moving to the left from A to C along the cut through the
caustic shown in Fig. 1, on the cusp curve, point B, there are two rays b and ¢ where ray
¢, the longer of the two, is the result of the merging of rays e and f on the caustic. As the
observation point moves from A inside the caustic to B on the caustic the locations of both
the rays e and f on the wavefront W(x) move toward the location of ray e on the wavefront.
Atfter crossing the wavefront, point C, the rays that merge on the cusp curve are lost
leaving only one ray.

Consider transient signals propagating along the rays shown in Fig. 1 at a speed c.
To reach the point along the cut shown in Fig. 1 where the ray the signal is propagating
along crosses the cut, it will take each signal a time t; = ri/c where rj is the distance along
the ray from the wavefront to the cut. Inside the cusp curve there will be three arrivals
times t; i=1.2,3 associated with the three ray paths to each point. On the cusp curve there
are only two arrival times as two of the rays have merged to come from the same point on
the wavefront. Outside the cusp curve there is only one arrival time as there is only one ray

path through each point. When the arrival times are displayed along consecutive lines
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20

Longitudinal
cusp curve

Figure 1) A calculation showing the wavefront W(x) = Wex2 / [x2 + (W./B)] where W, =
1 and B = 0.001. For large values of x, W(x) = We., while for small values of x, W(x) =
x4 + Bx2 where £ = —B2/W,,,. The local shape of this wavefront forms a longitudinal cusp
caustic described by Eq. (1). The location or the cusp curve for the wavefront shown is
also. Outside the cusp curve (C) there is only one ray passing through each point. On the
cusp curve (B) there are two rays passing through each point, one of which is due to the
merging of two rays on the cusp curve that are lost outside the cusp curve. Inside the cusp

curve (A) there are three distinct rays passing through each point.




corresponding to equispaced positions along a cut similar to the one shown in Fig. 1, the
arrival time surface has the general form shown in Fig. 2. In Fig. 2 the horizontal axis
represents the position of a hypothetical receiver in a receiver array of 41 receivers placed
along the cut shown in Fig. 1 with the center receiver at point A. The arrival times of the
signals propagating along rays from the wavefront are designated by the points in Fig. 2
with time increasing along the vertical axis. Positions 1-7 and 35-41 in Fig. 2 are outside
the cusp curve and there is only one arrival time shown. The two receivers positioned on
the cusp curve are at positions 8 and 34. There are two arrival times shown for positions 8
and 34 in Fig.2, the first is the single ray that was left outside the cusp curve and the
second is due to the two rays that merge on the cusp curve. Moving inside the cusp curve
at positions 9-33 there are three arrival times shown for each position. Position 21 shows
only two arrivals, however the first arrival is the simultaneous arrival of two signals that
travel along ray paths of equal length and thus arrive at the same time, point A in Fig. 1.

The symmetric transverse cusp caustic (TCC) is a cusp caustic that opens roughly
perpendicular (transverse) to the general direction of propagation of the wavefront. This
caustic is mirror symmetric along an axis perpendicular to the direction of propagation and
is defined by Eq. (12) below. The wavefront that produces the TCC, described by Eq.
(10) belowS, is curved along two directions and has the same mirror symmetry as the TCC.
This wavcrront forms a caustic surface in space similar to the surface shown in Fig. 3. The
TCC observed in the observation plane is a cut through this surface in a uv plane a distance
z {rom the exit plane. The diffraction catastrophe exhibited by the TCC is the same as that
of the axial cusp caustic. The diffraction pattern has been used (in Chapter 2) to
demonstrate that the wavefront given by Eq. (10) exhibits the characteristics of the
wavefront in catastrophe theory that produces a cusp caustic.

In the frequency domain each catastrophe is associated with a diffraction pattern and
caustic. The association of the caustics to the diffraction patterns is through the distance

function ased in the phase of the diffraction integral as in Eq. (2) below. Ray locations on
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Figure 2) An example of the general shape of the travel time curve associated with the

longitudinal cusp caustic for a horizontal cut that passes through a cusp curve. The points
in the figure represent the arrival times of signals that propagate to different positions along
a horizontal cut through a cusp curve similar to that shown in Fig. 1. This travel time curve
can be related to Fig. 1, assuming a uniform sound speed c, by dividing the distance, rj,
along the ray paths from the wavefront W(x) to the horizontal cut, by ¢ (t = rj/c). Positions
1-7 are outside the cusp curve like point C in Fig. 1. As the observation position moves
toward the cusp curve the ray path, marked a in Fig. 1, becomes longer and the arrival time
of the signal propagating along this ray path is later. On the cusp curve, position 8 in Fig.
2 and (B in Fig. 1), there are two arrivals, rays b and c, the later of which is due to two

rays that mcige on the cusp curve. Moving inside the cusp curve, positions 9-33, there are

three separate arrivals where at position 21 the eariy arrival is due to the simultaneous

arrival of two signals that travel along different ray paths that have the same length (A in

Fig. 1).
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Figure 3) The caustic surface formed by a wavefront with the general shape in the exit

plane given by Eq. (10). A transverse cusp caustic described by Eq. (12) is formed in a uv

plane that cuts through the caustic surface a distance z from the exit plane. The rib of the

caustic surface is formed by the locus of cusp points in consecutive uv planes cutting

through the surface. There is only one ray path to each point outside the surface, while

inside the surface there are three ray paths to each point. On the caustic surface two of the

ray paths merge to come from the same point in the exit plane and are subsequently lost as

the caustic surface is crossed moving outside.




the wavefront are given by the ray condition for the distance function of the diffraction
integral, Eq. (5) below. The ray location can be used in the distance function ® to find the
distance r a signal travels along a ray path to an observation point. Thus the distance
function that classifies a caustic also classifies the associated travel time surface that
displays the merging and disappearance of signals on the caustic.

Many scattering problems do not lend themselves to the use of long (many cycle)
source signals. One example is seismography. In seismography short single cycle bursts
from a point source are scattered by boundaries and sound speed gradients in the earth's
crust and the scattered field is measured at the surface. The scattered signals are collected at
the surface by either an array of receivers or by positioning the source along an array of
points and using the source as the receiver also. The collected signals are displayed vs
surface position and arrival time © in a manner similar to Fig. 2. This displays cuts through
the travel time surface of the wavefield scattered from the boundary. The travel time
surface displays the arrival times of all the rays from the wavefront to an observation plane
adding an extra dimension, time, to provide information. about the wavefront. Seismic
signals scattered from curved boundaries form travel time surfaces that can be categorized
in terms of the structufally stable caustics 7. Figure 2 shows the general shape of the travel
time surface associated with a common boundary shape similar to the shape of the
wavefront in Fig. 1 when he surface is buried sufficiently deep 68. In the vocabulary of
seismology, the travel time surface shown in Fig. 2 is an example of a triplication 9-10,
Identification of triplications is thought to be useful for inferring the local shape of the
reflecting surface 69,

Chapter 3 describes experiments to image the travel time surface in a transverse
observation plane associated with a TCC. The wavefront shape given by Eq. (10) below,
was produced by reflection of signals from a transient ultrasonic source. Section 2.A
reviews the general theory relating the travel time surfaces and the caustic surfaces. The

specific case of a TCC is formulated in section 2.B. Section 3 describes the experimental
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set up and technique used to image the travel time surface. Section 4 gives a calculation of

the travel time surface of the TCC and compares this to the results of the experiments.
Section 4 discussions the different orientations of the travel time surfaces for different
reflecting surfaces. Appendix A shows the method used to calculate the travel time surface

and location in the exit plane of the rays to the observation plane.
3.2 THEORY REVIEW

A) GENERAL ASPECTS OF TRAVEL TIME SURFACES ASSOCIATED
WITH CUSPOID CAUSTICS
Catastrophe theory uses canonical diffraction integrals to describe the diffraction

patterns near caustics. The general form of the diffraction integral is1-2:11

o0

W(Ck) = | dx b,C) exp[ ikd(a,C)], 2)

where d(x,C) is the distance function associated with a particular catastrophe, b(a,C) is a
slowly varying amplitude function, and k is the wave number of the signal k = 2n/A. The
state variables a = (ay, ap, a3, ...) and control parameters C = (Cy, Cp, ...) in ® are the
confined in this paper to be the exit and observation plane coordinates respectively. With
the state variables a and control parameters C as defined above the distance function
®(a,C) gives the total distance traveled by a signal that propagates from a source to the
reflecting surface then to a receiver’. The diffraction patterns described by Eq. (2) are
often referred to as diffraction catastrophes. When ray theories are used to describe the
catastrophes there is a divergent amplitude occurring on the associated caustic of each
catastrophe. The caustics are focal envelopes of rays originating on the wavefronts that

produce the diffraction catastrophes.




The catastrophes are classified by the number of state variables needed to describe
the most singular section of the catastrophe, the corank N; and the number of control
parameters needed to describe the caustic, the codimension K. Cuspoid catastrophes are
the simplest of the catastrophes as the most singular section of the caustic surface
associated with the catastrophe can be described by a single state variable!. Thus there is
only one state variable necessary to describe a cuspoid catastrophe a = (x) and the corank
of cuspoid catastrophes is N = 1. For cuspoid catastrophes , the distance function of the
diffraction integral ®(x,C) has the general forml.9

(K2 4K (K1
¢(x,C)=m—CK—K"—CK_[-K_—1—...—C] x, K=0,12, .., 3

where K is the codimension of the catastrophe. Away from the caustic, the amplitude of
the diffraction pattern may be approximated using the stationary phase approximation of
Eq. (2). In the stationary phase approximation W(C k) is proportional to IH(x,C)I-1/2

where

2
H(x.C) = 22 @

ox2’
and is evaluated at each of the stationary points of ®(x;,C) defined by the ray condition

3—1’!M =0, (5)
where the x; are the locations of the rays in the exit plane. The caustic surface of each
catastrophe is defined by the singularities of the stationary phase approximation of ¥(C.k)
where H(x;,C) = 0. Figure 4 shows the caustic surfaces in control space of the first three
cuspoid catastrophes. The diffraction pattern is exhibited when continuous or very long
(many cycle) source signals are used.

When short single cycle signals are used to produce the wavefield, the tzmporal

response of the wavefield can be studied. This adds an extra dimension. time, unavailable

in the frequency domain diffraction pattern. The temporal response of the wavefield can be
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Figure 4) The caustic surfaces of the first three codimension cuspoid caustic (a) fold
caustic K=1 is described by a single control parameter and thus is represented by a point,
(b) the cusp caust.c K=2 is described by two control parameters and is given by a curve in
a plane, and (c) the swallow tail caustic K=3 described by three control parameters forming
a surface in three dimensional space. The travel time surface of a cuspeid catastrophe of

codimension K has the same form as the caustic surface of codimension K+1.




76
found using the ray condition Eq. (5) to locate the rays in the exit plane. The location of

the rays in the exit plane can be used in the distance function of the canonical diffraction
integral to find the distance along a ray path to a point in the observation plane. The time it
takes for a signal from a wavefront that forms a cuspoid caustic to reach the observation

plane is

ti = d(x;.0) /c, (6)
where ¢ is the speed of sound in the propagating medium and the x; are the locations in the
exit plane of the ray paths that pass through the observation point given by C.

Equation (6) along with the ray condition Eq. (5) define a parametric equation for
the travel time surface associated with the caustic corresponding to ®(x,C). Using Eq. (3).
the caustic surface of the cuspoid catastrophe of codimension K is defined by the

simultaneous solution of the ray condition for a cuspoid caustic

od
BY=XK+I — CgxK-1 _Cg_xK-2 - _C; =0, N
and Eq. (4)
2
g—x(—;i = (K+DxK - CkxK-2 - Cx_1xK-3 - .. -C3=0. (8)

The travel time surface of the cuspoid caustic of codimension K is defined by the
simultaneous solution of the Eq. (6) for a cuspoid caustic

xK+2 xK xK—l
(D(X,C)—t:m—CKT( —CK‘XFI_ - . =Cix=-t=0, 9)

and the ray condition Eq. (7). Comparing Egs. (7) through (9), the parametric definition of
the travel time surface given by Eqs. (7) and (9) has the form of the equations that define
the catastrophe surface for the cuspoid of codimension K+1 with t becoming the control
parameter C; for the travel time surface’. The parametric equations given by Egs. (7) - (9)
for the travel time and caustic surfaces of the cuspoid caustic of codimension 2 (the cusp

caustic) are given in Table I. The more general scaling relationship between the control




TABLE I. Defining equations for the travel time surface of the cusp caustic (K=2) and the

caustic surface of the swallow tail caustic (K=3).

Travel time surface defining equations for codimension K=2
(cusp caustic)

d-t=0

4
%(:i=x7—c252-—c1x—t=o

ray condition

%%=x3—C3x—C2=O

Caustic surface defining equations for codimension K=3
(swallow tail caustic)

ray condition

%?(i: x4 - C3x2 -Cx-C1 =0

Hessian = 0

a—2%=4x3 -2C3x -C2 =0
ox
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TABLE 1I. Relation of the parameters defining the cuspoid catastrophe of codimension
K+1 to the parameters defining the travel ime surface of the cuspoid

catastrophe of codimension K.

codimension K + 1 codimension K
Ck+1 K/(K+2) Ck
Cx(K-1)/(K+2) Ck-1
Co/(K+2) Cy
C1/(K+2) t
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Figure 5) The singular part of the travel time surfaces for the (a) fold caustic, (b)
longitudinal cusp caustic (Fig. 1), and (c) the transverse cusp caustic. (a) The travel time
surface of the fold caustic (K = 1) has two effective control parameters Atjand U - Uy,
where At has two values when U < U, (the caustic has not been crossed). (b) The travel
time surface of the longitudinal cusp caustic similar to that shown in iig. 1 uas three
control parameters: Atj, u (a coordinate transverse to the direction of propagation of the
wavefront), and z — zcp. When inside the cusp caustic, z > z¢p, there are three values of At
for each point (u, z). (c) The travel time surface for a transverse cusp caustic similar to that
of the cusp caustic formed by a transverse cut through the surface showa in Fig. 3. There

are three effective control parameters At;, v. and u — ucp, with three values of At; when

inside the caustic u > ucp.
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parameters of the caustic and the travel time surfaces for a cuspoid caustic of codimension
K are given in Table I1.

The analysis given above shows that for the cusp catastrophe (K=2) the travel time
surface should have the general form of a swallow tail caustic (K=3). Figure 5 shows the
travel time surfaces for the fold, K=1, (Fig. 5a) longitudinal cusp, K = 2, (Fig. 5b) and
transverse cusp (Fig. 5c) catastrophes. The fold caustic can be described with only one
control parameter and appears as a point in Fig. 4. The cusp caustic is defined by two
control parameters and the swallow tail requires three control parameters. The travel time
surface of the fold catastrophe requires the single control parameter Cj of the fold caustic
and the arrival time of the transient source signal. Thus the travel time surface of the fold
catastrophe has two effective control parameters and has the general shape of the cusp
caustic, Fig. 5a. Similarly the travel time surface of the cusp catastrophe requires the two
control parameters of the cusp caustic, C| and Cp, and the arrival time giving three effective
control parameters for the travel time surface of the cusp catastrophe, Fig. 5b and 5c.

Marston 12 illustrates the above result for the fold caustic.

B) TRAVEL TIME SURFACE OF THE TRANSVERSE CUSP CAUSTIC
The transverse cusp caustic (TCC) is a cusp caustic that opens roughly transverse to
the general direction of propagation of the wavefront producing the caustic. Unlike the
wavefront that produces the axial or longitudinal cusp associated with the cylindrical
aberration 3, the TCC wavefront is curved in two directions 3. The general shape of the

wavefront that produces a TCC is given in the exit plane by

W(x,y) = — (a1x2 + apxy? + ajy? + agx + asy), (10)
where the last three terms only affect the location of the cusp in the observation plane. This
wavefront can be produced by the reflection of the signal produced by a point source of

sound, from a surface with the general shape!3-14
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Figure 6) Geometry for the reflection of the signal produced by a point source of sound
from a curved surface to produce the wavefront that propagates to form a transverse cusp
caustic. The distance function & for the propagation of the source signal from the point

(us,Vs,Zs) in the source plane to the P’ on the reflecting surface and then to the point (u.v.z)

in the observation plane is given paraxially by Eq. (15).




h(x,y) = h1xZ + hoxy? + h3y2 + hax + hsy, (11)
where the linear terms produce linear terms in the scattered wavefront and may be set to
zero by a proper choice of origin. The wavefront defined in Eq. (10) produces a cusp

caustic in an observation plane transverse to the direction of propagation defined by

D1(Ue - Uec)3 = Ve2, (12)
where Ug, Ve, Uec, and D are defined below in terms of the source, and receiver
coordinates and the surface parameters h;. Figure 6 shows the geometry for the reflection
of the spherical source signal from the curved surface.

The propagation integral that gives the scattered field in a distant observation plane

can be approximated paraxially by3-13

c . oo oo |
pluv) = ZKcilfrs ke ) .( Ie_lkq’(ue‘ve’x"') dx dy, (13)

where q is the strength of the source, r and rg are the distances from the origin in the exit
plane to the observation point (u,v) and the source point (ug,vy), & is the reflection
coefficient of the surface, and k is the wavenumber of the wavefront (k =2n/A = w/c).

The paraxial reduced distance function ¢ is given by

®(Ue, Ve.X,y) = b1'x2 + a2'xy? + b3'y2 + Uex + Vey, (14)
where bi' = —2hj + 1/2z¢, a3’ = -2hg, Ue = 0/z + ug/zg, Ve = v/z + vg/zg, and
-1
Ze = (l/z + l/zs) . The coordinates (u, v, z) and (ug, v, z¢) give the location of the

source and receiver. The complete distance function of the TCC is

D(x,y:Ue,Ve) = §o(Ue, Ve) + 0(x, y, Ue, Ve), (15)
where ¢y =1 + I 15 a slowly varying function of the source and receiver positions and does
not depend on the exit plane coordinates x and y, thus it may be pulled out of the diffraction
integral Eq. (13). Using Eq. (14). Eq. (13) can be evaluated to give the pressure in an

observation plane as
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p(u,v) = 1/‘1§ T exp(ik(r +19) - & F) - 57 ) Pelwawn),  (16)
irrg(2mib' 117 1a21?)

where the upper (lower) sign is used when by’ <0 (by' > 0)3-13, In a distant observation
plane the diffraction catastrophe associated with the TCC is proportional to the Pearcey

function 3 P(wa.w1)

P o
. ., s4 §2 .. .
Pi{wa wy) = Jexp[i-xd*p(s,\vl,v.ﬂ)} ds - explFi( T W2+ wis )] ds. (/)
—_—00

The control parameters w7 and w are related to the observation plane coordinates by
K 1
w2 = (ﬁm )2 ( Ue — Uec) sgn(a2), (18a)

1 1
wy = (k2 Iby1) (5227)2 Ve sgn(by’), (18b)

where Uge = UgfZ + ugfzg = — 2by1'b3'/ay’, u is the horizontal location of the cusp point, and
k = 2m/A is the wave number of the source signal.

The distance function of the diffraction integral of the TCC contains two variables
x and y, however the integral can be evaluated to give the TCC diffraction catastrophe in
terms of the Pearcey function which has only one state variable. The evaluation of the TCC
diffraction integral amounts to a smooth coordinate transformation to the Pearcey
function!3. Note the phase of the Pearcey function in Eq. (17) has the form

Ke2 K
P(s,0) =% 0% -Cys, (19)

where K = 2 and for the TCC C; = -w1 and C2 = —w>, thus the Pearcey function is in the
general form of the cusp catastrophe diffraction integral. The diffraction pattern and
associated caustic of the TCC have the same general form as the diffraction pattern and
associated caustic of the cuspoid caustic of codimension K = 2 (the longitudinal cusp

caustic). The merging and disappearance of the rays of the the K = 2 cuspoid caustic in a
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longitudinal observation plane are described by a travel time surface with the general shape

of the cuspoid caustic of codimension K = 3. A TCC will have rays merging and
disappearing on a cusp caustic similar to the longitudinal cusp caustic except in a transverse
plane. Thus the transverse travel time surface should have the same general shape in a
transverse observation plane as the longitudinal travel time surface in a longitudinal
observation plane, the swallow tail caustic surface Fig. 4c.

To calculate the travel time surface of the TCC, the ray condition for the reduced
distance function of the diffraction integral ¢(x,y;Ue,Ve) can be used. The location in the
exit plane of the rays from the wavefront is given by the ray conditions for the two

dimensional TCC diffraction integral
90 L)
ox l(Xi,y'.) =0 5 I(xi,yi) =0, (20a,b)

where the location of the ray in the exit plane is (x;,yj). When the observation point is
inside the cusp curve there will be three real ray locations in the exit plane. When the
observation point is on the curve two of the rays will have merged, and outside the cusp
curve there is only one real ray from the wavefront. Equations (20a,b) and Eq. (14) give

the locations of rays in the exit plane as the simultaneous solutions of

2
3 L) = 2015 + a2y = U =0 @1a)
0

53 | i) = 25 (22'%; +b3) = Ve = 0. 21b)

The solution of Eq. (21a) for x; can be used in Eq. (21b) to give a cubic equation in yj
. b '
it = 3y (Ue=Uee) + 5 Ve =0. (22)

The solution shown in Appendix A, of Eq. (22) for y; and then Eq. (21a) for x; gives the
location in the exit plane of the ray or rays to the point in the observation plane given by Ug

and Ve. The total distance traveled along a ray path that passes through a point in the




Figure 7) The calculated travel time surface of the transverse cusp caustic. (a) The slowly
varying contribution of the form ¢y/c in Eq. (25). (b) The term due to the reduced distance
function of the diffraction integral ¢,Eq. (14). This contribution has the general shape of
the travel time surface of the transverse cusp shown in Fig. 5c. (c) The sum of the two

contributions shown in a and b giving the complete travel time surface of the transverse

cusp caustic.
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observation plane is given by the complete distance function ®(x,y;Ue, V), the distance
from the source to the reflecting surface plus the distance from the reflecting surface to the
observation plane. In Fig. 6 this distance is the distance from (us,vs,zs) to P’ on the
surface plus the distance from P’ to (u,v,z) in the observation plane.

The paraxial distance function for reflecting from the curved surface that forms a
TCC is given by Eq. (15). For a uniform medium with a constant sound speed c, the travel

time surface of the TCC is given by

_ PxiyisUe, Ve)

Ay c

(23)

where (xj,yj) is the location in the exit plane of the ray paths that pass through (Ue,Ve).
For observation points in the observation plane inside the cusp curve there will be three real
values of Atj. On the cusp curve there will be two real values of At;, one associated with
the two ray paths that have merged to come from the same point on the wavefront. Qutside
the cusp curve there will only be one real value of At;. The arrival time surface given by
Eqgs. (15) and (23) can be written in two parts, one a slowly varying portion ¢, that does
not describe the merging of the rays on the caustic and the other depending on the reduced
distance function ¢ of the wavefront in the exit plane which will describe the swallow tail

characteristics of the travel time surface due to the of merging rays on the caustic. Thus At;

may be written

- 9o(Ue, Ve) + Oc(Xi,¥i:Ue,Ve)
C C !

At 29

-

¢>O(Ue,Ve)=r+rS=\/z2+v2+u2+\/z§+v‘; + uzS . (29)

Equation (25) gives the paraxial approximation to the travel time surface due to the
reflection of the spherical point source from the origin in the exit plane. The reduced

distance function ¢(x,y;Ue, V) describes the contribution to the travel time surface due to

the shape of the reflecting surface.
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Figure 7a shows a calculation of ¢¢/c, using the parameters given below, that gives
the dependence of the travel time surface on the distance from the source point to the
reflecting surface plus the distance from the reflecting surface to points in the observation
plane. This carries no information about the surface other then the distance of the source
and receiver points from the surface. Characteristics of the travel time surface due to the
shape of the reflecting surface are shown in Fig. 7b. The travel time surface shown in Fig.
7b, calculated using ¢/c and the parameters given below, has the general form of the
singular surface of the swallow tail catastrophe shown in Fig. 4c with C; & t, C2 & Ve,
and C3 & (Ue — Uec). The complete travel time surface is shown in Fig. 7c; this is the
combined contributions shown in Figs. 7a and 6b, ®/c = ¢y/c + ¢/c =t. The interesting
features of the complete travel time surface (®/c) are the swallow tail features describing the
merging of rays on the caustic. Figures 7a-c show travel time surface contributions ¢g/c,
¢/c, and the travel time surface ®/c calculated using Egs. (21)-(23). The values of the
parameters used in the caiculations were